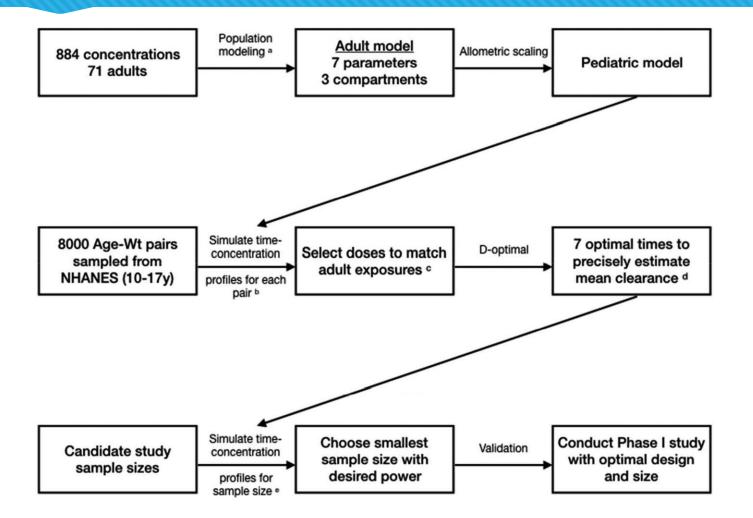



EUROPEAN PAEDIATRIC TRANSLATIONAL RESEARCH INFRASTRUCTURE

# Pharmacometrics for better dosing in children

Pier Giorgio Cojutti Alma Mater Studiorum – University of Bologna Bologna, March 14<sup>th</sup> 2025 Modeling and Simulation in Pediatric Drug Therapy: Application of Pharmacometrics to Define the Right Dose for Children


Vinks AA et al. Clin Pharmacol Therap. 2015;98(3):298-308



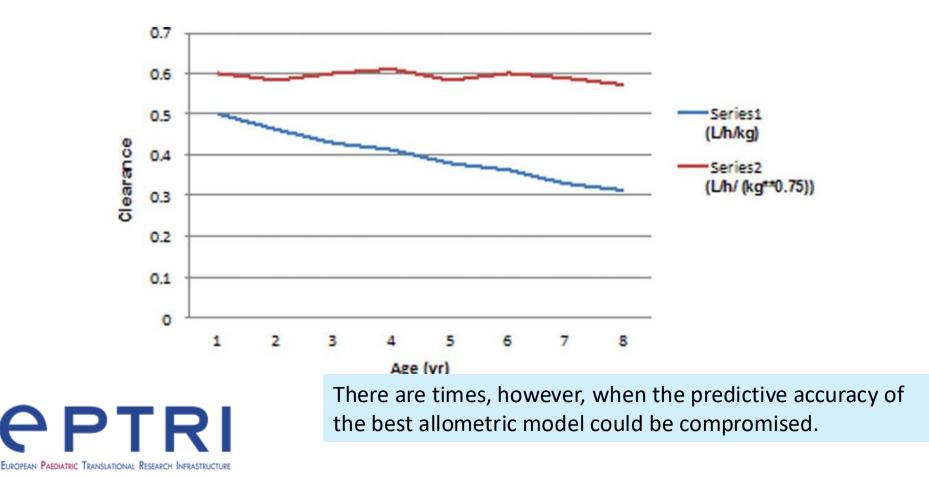


#### Modeling and Simulation Is Essential to Pediatric Clinical Pharmacology

Neely M et al. J Clin Pharmacol. 2018;58(S10):S73-85






Kearns GL. Clin Pharmacol Therp. 2015;98(3):238-40

- THE CONUNDRUM OF AGE-APPROPRIATE DOSE SELECTION
  - drug action/response in sick children can be adequately predicted by data from adults
  - the pediatric population is homogenous
- ARE CHILDREN SIMPLY SMALL ADULTS? IT DEPENDS. . .
  - Allometric theory is true: the unit of  $\frac{3}{4}$  (0.75) power of body weight (kg0.75) is a suitable unit of metabolic body size
  - Maturation factor+ organ function

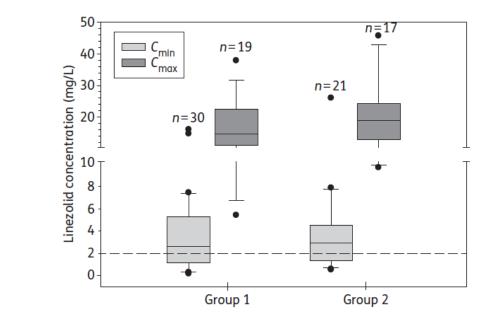


Kearns GL. Clin Pharmacol Therp. 2015;98(3):238-40

Impact of allometric scaling on the apparent relationship between oral clearance of a drug and age (when age is used as a developmental surrogate)



| Characteristics                                    | Group 1 (n = 14)       | Group 2 (n=9)          | Р       |
|----------------------------------------------------|------------------------|------------------------|---------|
| General characteristics                            |                        |                        |         |
| age (years), mean $\pm$ SD                         | 4.9±2.8                | 14.9 <u>+</u> 1.3      | < 0.001 |
| sex (male/female)                                  | 10/4                   | 6/3                    | 1.000   |
| body weight (kg), mean $\pm$ SD                    | 19.0±9.5               | 57.2 ± 18.5            | < 0.001 |
| body surface area (m <sup>2</sup> ), mean $\pm$ SD | 0.71±0.26              | $1.63 \pm 0.30$        | < 0.001 |
| $CL_{CR}^{a}$ (mL/min), mean $\pm$ SD              | $3.38 \pm 2.02$        | $2.76 \pm 1.69$        | 0.223   |
| Underlying disease, n (%)                          |                        |                        |         |
| haematological malignancies                        | 7 (50.0)               | 4 (44.4)               | 1.000   |
| CNS neoplasia                                      | 4 (28.6)               | 0 (0.0)                | 0.127   |
| cerebral abscess                                   | 1 (7.1)                | 0 (0.0)                | 1.000   |
| hydrocephalus                                      | 1 (7.1)                | 1 (11.1)               | 1.000   |
| cerebral venous thrombosis                         | 1 (7.1)                | 0 (0.0)                | 1.000   |
| polytrauma                                         | 0 (0.0)                | 3 (33.3)               | 0.047   |
| cystic fibrosis                                    | 0 (0.0)                | 1 (11.1)               | 0.390   |
| Main reason for linezolid, n (%)                   |                        |                        |         |
| CNS infection                                      | 7 (50.0)               | 1 (11.1)               | 0.086   |
| pneumonia                                          | 4 (28.6)               | 3 (33.3)               | 1.000   |
| BSI                                                | 3 (21.4)               | 2 (22.2)               | 1.000   |
| bone and joint infection                           | 0 (0.0)                | 3 (33.3)               | 0.047   |
| Microbiological isolate, n (%)                     |                        |                        |         |
| MR-CoNS                                            | 5 (33.3)               | 5 (55.6)               | 0.403   |
| MRSA                                               | 2 (13.3)               | 1 (11.1)               | 1.000   |
| unidentified                                       | 8 (57.1)               | 3 (33.3)               | 0.423   |
| Linezolid treatment                                |                        |                        |         |
| duration of treatment (days), median (IQR)         | 15.7 (11-17.8)         | 11 (10-28)             | 0.975   |
| dose/kg/day, median (IQR)                          | 32.4 (30-36.4)         | 21.4 (15-28.6)         | < 0.001 |
| route of administration (iv/os)                    | 12/2                   | 6/3                    | 0.343   |
| no. of instances of TDM, median (IQR)              | 2 (1-2.75)             | 2 (2-3)                | 0.570   |
| C <sub>min</sub> (mg/L), median (IQR)              | 2.57 (1.33-5.12)       | 2.90 (1.36-4.16)       | 0.759   |
| AUC <sub>24</sub> (mg·h/L), median (IQR)           | 240.35 (174.04-394.74) | 298.68 (203.50-654.97) | 0.106   |
| Clinical outcome                                   |                        |                        |         |
| cured                                              | 9 (64.3)               | 5 (55.6)               | 1.000   |
| improved                                           | 3 (21.4)               | 1 (11.1)               | 1.000   |
| unchanged or failed                                | 1 (7.1)                | 3 (33.3)               | 0.260   |
| deceased for other causes                          | 1 (7.1)                | 0 (0.0)                | 1.000   |
|                                                    |                        |                        |         |


#### Cojutti P et al. J Antimicrob Chemother. 2015 Jan;70(1):198-206

EUROPEAN PAEDIATRIC TRANSLATIONAL RESEARCH INFRASTRUCTURE

Cojutti P et al. J Antimicrob Chemother. 2015 Jan;70(1):198-206

At first TDM (recommended age-based dosing regimens):

- Cmin was below the desired range in 50% of pts in Group1
- Cmin was below the desired range in 44% of pts in Group 2
- Cmin was above the desired range in only 1 pt in Group 2





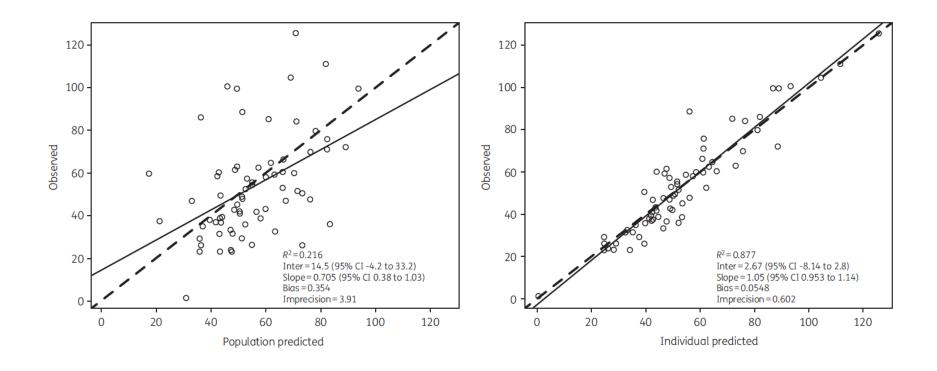
#### Cojutti P et al. J Antimicrob Chemother. 2015 Jan;70(1):198-206

|                                        | Univariate analysis                   |         | Multivariate analysis                                     |         |
|----------------------------------------|---------------------------------------|---------|-----------------------------------------------------------|---------|
| Variable                               | unstandardized β-coefficient (95% CI) | Р       | unstandardized $\beta$ -coefficient (95% CI) <sup>a</sup> | Р       |
| Age (years)                            | 0.122 (-0.104, 0.348)                 | 0.283   |                                                           |         |
| Sex                                    | -0.695 (-3.273, 1.883)                | 0.590   |                                                           |         |
| Weight (kg)                            | 0.001 (-0.055, 0.056)                 | 0.983   |                                                           |         |
| Body surface area (m <sup>2</sup> )    | 0.293 (-2.117, 2.704)                 | 0.808   |                                                           |         |
| CL <sub>CR</sub> (mL/min) <sup>b</sup> | -0.013 (-0.033, 0.007)                | 0.201   |                                                           |         |
| Daily dose (mg/kg)                     | -0.045 (-0.183, 0.093)                | 0.518   |                                                           |         |
| Co-treatment with:                     |                                       |         |                                                           |         |
| phenobarbital (6/51)                   | -2.384 (-6.275, 1.507)                | 0.200   | -5.254 (-7.804, -2.704)                                   | < 0.001 |
| dexamethasone (6/51)                   | -2.848 (-6.085, 0.389)                | 0.083   |                                                           |         |
| rifampicin (1/51)                      | -3.461 (-12.587, 5.664)               | 0.450   |                                                           |         |
| proton pump inhibitors (8/51)          | 3.137 (-0.244, 6.519)                 | 0.068   | 5.695 (3.382, 8.008)                                      | < 0.001 |
| calcium channel antagonists (6/51)     | 1.906 (-4.628, 8.440)                 | 0.560   | * -                                                       |         |
| amiodarone (2/51)                      | 22.569 (16.066, 29.072)               | < 0.001 | 22.549 (17.462, 27.636)                                   | < 0.001 |



Cojutti P et al. J Antimicrob Chemother. 2015 Jan;70(1):198-206






Cojutti P et al. J Antimicrob Chemother. 2019;74(6):1648-55

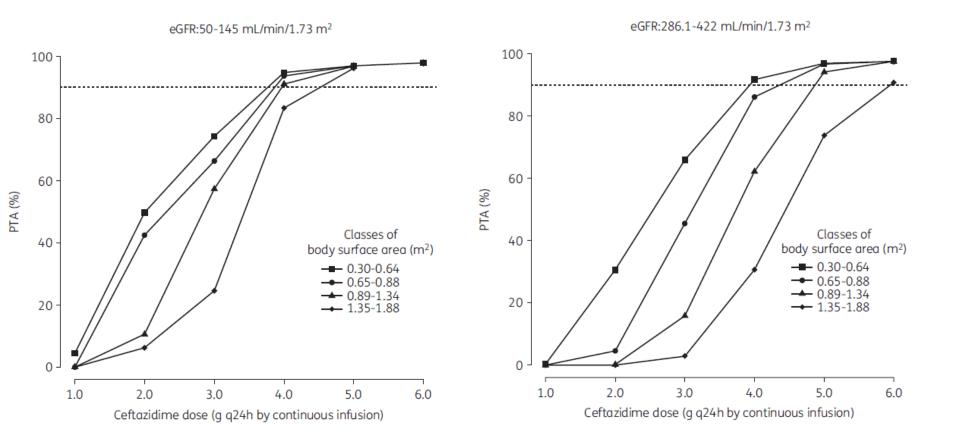
| Total number of patients                          | 46                     |
|---------------------------------------------------|------------------------|
| Age (years), median (IQR)                         | 7.5 (4.0-12.0)         |
| Male/female, n/n                                  | 29/17                  |
| Weight (kg), median (IQR)                         | 25.0 (14.03-39.80)     |
| Height (m), median (IQR)                          | 1.20 (1.01-1.49)       |
| Body surface area (m <sup>2</sup> ), median (IQR) | 0.88 (0.64-1.34)       |
| eGFR (mL/min/1.73 m <sup>2</sup> ), median (IQR)  | 200.0 (145.0-286.0)    |
| Time from HSCT (days), median (IQR)               | 6.0 (1.0-11.75)        |
| Type of haematological disease, n (%)             |                        |
| ALL                                               | 22 (47.8)              |
| AML                                               | 5 (10.9)               |
| juvenile myelomonocytic leukaemia/CML             | 5 (10.9)               |
| aplastic/Fanconi anaemia                          | 4 (8.7)                |
| neuroblastoma                                     | 3 (6.5)                |
| congenital immunodeficiency disorders             | 3 (6.5)                |
| sickle-cell anaemia                               | 2 (4.35)               |
| Ewing sarcoma                                     | 2 (4.35)               |
| Ceftazidime treatment characteristics             | . ,                    |
| dose/kg/day (mg/kg), median (IQR)                 | 145.98 (128.31–171.27) |
| C <sub>ss</sub> (mg/L), median (IQR)              | 49.23 (36.81-62.88)    |
| no. of TDM instances, median (IQR)                | 1.0 (1.0-2.0)          |
| duration of treatment (days), median (IQR)        | 10.5 (7.0–16.0)        |
| additional antibiotics, n (%)                     |                        |
| amikacin                                          | 38 (82.6)              |
| teicoplanin                                       | 19 (41.3)              |
| vancomycin                                        | 14 (30.4)              |
| levofloxacin                                      | 13 (28.3)              |
| tigecycline                                       | 5 (10.9)               |
| metronidazole                                     | 3 (6.5)                |



Cojutti P et al. J Antimicrob Chemother. 2019;74(6):1648-55






Population pharmacokinetics of continuous-infusion ceftazidime in febrile neutropenic children undergoing HSCT: implications for target attainment for empirical treatment against *Pseudomonas aeruginosa* Cojutti P et al. J Antimicrob Chemother. 2019;74(6):1648-55

> Estimated glomerular filtration rate (eGFR) and body surface area were the covariates associated with drug clearance.

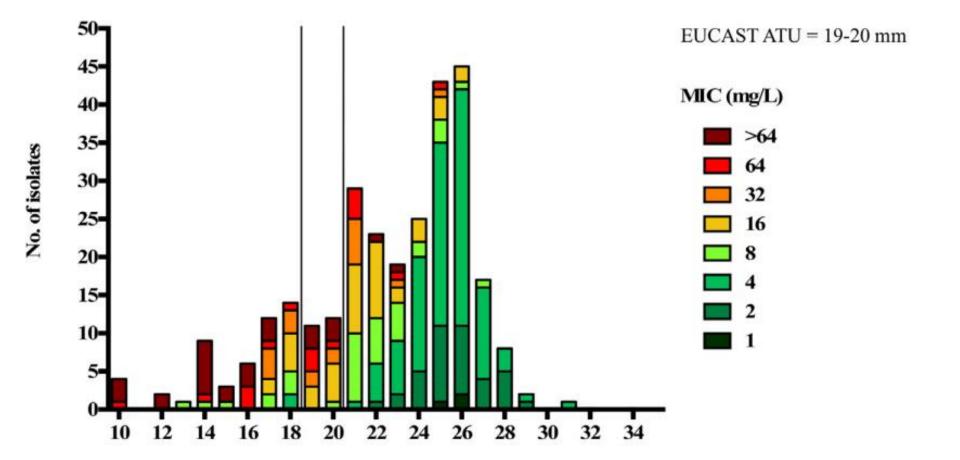
|                                                                           | Mean                                                       | Standard<br>deviation                                                                                  | Coefficient of variation (%)          | Median |  |
|---------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------|--------|--|
| CL (L/h) =                                                                | $\theta_1 \cdot \left(\frac{\text{body surf}}{0.8}\right)$ | $\left(\frac{\text{eGFf}}{8}\right)^{\theta_2} \cdot \left(\frac{\text{eGFf}}{200.}\right)^{\theta_2}$ | $\left(\frac{R}{5}\right)^{\theta_3}$ |        |  |
| $\theta_1$                                                                | 2.83                                                       | 1.29                                                                                                   | 45.66                                 | 2.71   |  |
| $\theta_2$                                                                | 0.68                                                       | 0.37                                                                                                   | 54.31                                 | 0.84   |  |
| $\theta_3$                                                                | 0.34                                                       | 0.19                                                                                                   | 55.79                                 | 0.28   |  |
| $V(L) = \theta_4 \cdot \left(\frac{\text{height}}{120}\right)^{\theta_5}$ |                                                            |                                                                                                        |                                       |        |  |
| $\theta_4$                                                                | 33.95                                                      | 32.09                                                                                                  | 94.52                                 | 25.89  |  |
| $\theta_5$                                                                | 0.95                                                       | 0.82                                                                                                   | 86.02                                 | 0.85   |  |
| $k_{\rm cp}$ (h <sup>-1</sup> )                                           | 11.51                                                      | 14.69                                                                                                  | 127.74                                | 3.70   |  |
| k <sub>cp</sub> (h <sup>-1</sup> )<br>k <sub>pc</sub> (h <sup>-1</sup> )  | 15.42                                                      | 3.56                                                                                                   | 23.11                                 | 14.91  |  |







EUROPEAN PAEDIATRIC TRANSLATIONAL RESEARCH INFRASTRUCTURE


Population pharmacokinetics of continuous-infusion ceftazidime in febrile neutropenic children undergoing HSCT: implications for target attainment for empirical treatment against *Pseudomonas aeruginosa* Cojutti P et al. J Antimicrob Chemother. 2019;74(6):1648-55

|                                    | Body surface area (m <sup>2</sup> ) |           |           |           |
|------------------------------------|-------------------------------------|-----------|-----------|-----------|
| eGFR (mL/min/1.73 m <sup>2</sup> ) | 0.30-0.64                           | 0.65-0.88 | 0.89-1.34 | 1.35-1.84 |
| 50.0-145.0                         | 3ª                                  | 4         | 4         | 5         |
| 145.1-200.0                        | 3 <sup>b</sup>                      | 4         | 5         | 5         |
| 200.1-286.0                        | 4                                   | 4         | 5         | 6         |
| 286.1-422.0                        | 4                                   | 5         | 5         | 6         |

Superscript letters identify suboptimal PTAs: <sup>a</sup>PTA <75% and <sup>b</sup>PTA <70%.



## **EUCAST MIC Distribution**



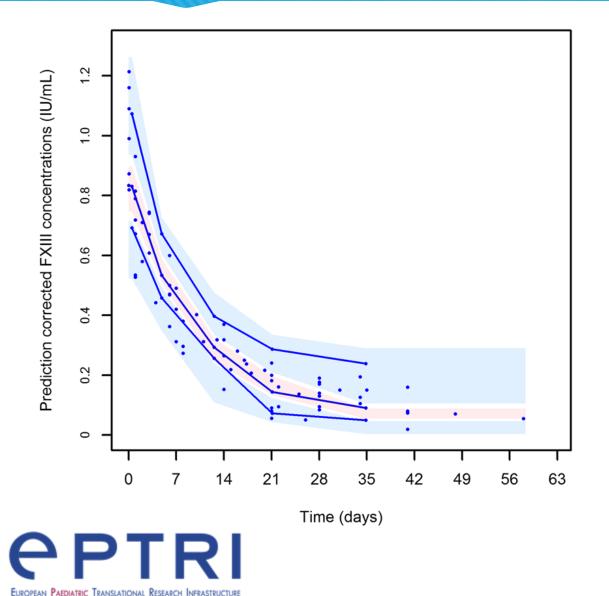
EUROPEAN PAEDIATRIC TRANSLATIONAL RESEARCH INFRASTRUCTURE

Cojutti P et al. J Antimicrob Chemother. 2019;74(6):1648-55

**Table 5.** CFR with the advisable continuous-infusion ceftazidime dosages targeting  $C_{ss}/MIC \ge 4$  against *P. aeruginosa* in relation to the MIC distribution of EUCAST and that observed at our centre in HSCT children with high-risk FN in relation to classes of eGFR and body surface area

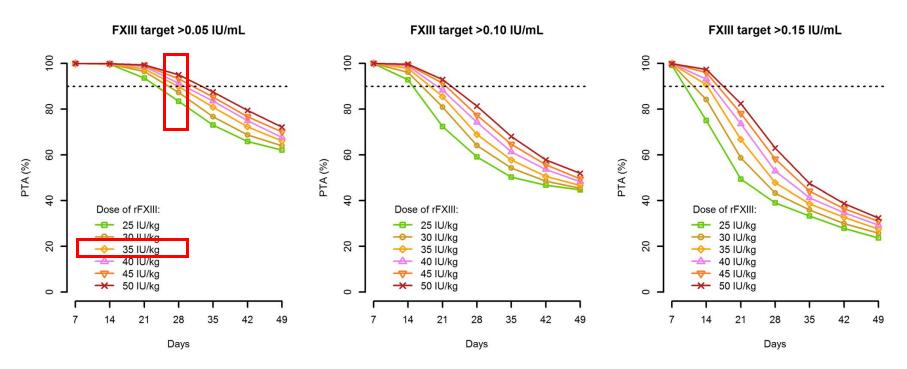
| eGFR (mL/min/1.73 m <sup>2</sup> ) |           |                                | CFR (%)                             |                                        |
|------------------------------------|-----------|--------------------------------|-------------------------------------|----------------------------------------|
|                                    |           | Ceftazidime<br>dosage (g q24h) | according to EUCAST<br>distribution | according to our<br>local distribution |
| 50.0-145.0                         | 0.30-0.64 | 3                              | 88.3                                | 80.3                                   |
|                                    | 0.65-0.88 | 4                              | 90.2                                | 81.8                                   |
|                                    | 0.89-1.34 | 4                              | 88.3                                | 80.2                                   |
|                                    | 1.35-1.84 | 5                              | 88.9                                | 80.7                                   |
| 145.1-200.0                        | 0.30-0.64 | 3                              | 87.1                                | 79.4                                   |
|                                    | 0.65-0.88 | 4                              | 89.1                                | 80.9                                   |
|                                    | 0.89-1.34 | 5                              | 89.2                                | 80.9                                   |
|                                    | 1.35-1.84 | 5                              | 88.5                                | 80.4                                   |
| 200.1-286.0                        | 0.30-0.64 | 4                              | 90.1                                | 81.7                                   |
|                                    | 0.65-0.88 | 4                              | 88.2                                | 80.2                                   |
|                                    | 0.89-1.34 | 5                              | 88.7                                | 80.5                                   |
|                                    | 1.35-1.84 | 6                              | 88.8                                | 80.6                                   |
| 286.1-422.0                        | 0.30-0.64 | 4                              | 89.4                                | 81.2                                   |
|                                    | 0.65-0.88 | 5                              | 89.9                                | 81.4                                   |
|                                    | 0.89-1.34 | 5                              | 88.3                                | 80.2                                   |
|                                    | 1.35-1.84 | 6                              | 88.0                                | 79.9                                   |




Real-Life Population Pharmacokinetics of Recombinant Factor XIII and Dosing Considerations for Preventing the Risk of Bleeding in Patients with FXIII Congenital Deficiency Cojutti P et al. Clin Pharmacokinet. 2022;61(4):505-13

| Table 1 | Demographic and clinical characteristics of the population $(n)$ |
|---------|------------------------------------------------------------------|
| = 18)   |                                                                  |

| Patient characteristics              | Median (minimum-maximum) |
|--------------------------------------|--------------------------|
| Age (years)                          | 34.5 (6–74)              |
| Weight (kg)                          | 71.5 (19–98)             |
| Body mass index (kg/m <sup>2</sup> ) | 24.5 (13-33.5)           |
| Creatinine clearance (mL/min)        | 112.2 (66.0–223.1)       |
| Factor XIII deficiency status        |                          |
| Minor                                | 2                        |
| Moderate                             | 2                        |
| Severe                               | 14                       |
| Dose (IU/kg)                         | 32.5 (25-50)             |
| Number of samples per patient        | 5 (1-10)                 |




Real-Life Population Pharmacokinetics of Recombinant Factor XIII and Dosing Considerations for Preventing the Risk of Bleeding in Patients with FXIII Congenital Deficiency Cojutti P et al. Clin Pharmacokinet. 2022;61(4):505-13



- 5-min intravenous infusion of rFXIII at 35 IU/kg
- Blood samples collected between 15-1392 h postdose

Real-Life Population Pharmacokinetics of Recombinant Factor XIII and Dosing Considerations for Preventing the Risk of Bleeding in Patients with FXIII Congenital Deficiency Cojutti P et al. Clin Pharmacokinet. 2022;61(4):505-13



- Population pharmacokinetic analysis of data from real-life patients with FXIII deficiency treated with recombinant factor XIII (rFXIII) may help to better elucidate the pharmacokinetics of rFXIII and to assess the attainment of common FXIII thresholds to minimise the risk of bleeding.
- The standard rFXIII dosage of 35 IU/kg every 4 weeks is associated with a suboptimal attainment at day 28 of 89.9%, 68.9% and 47.8% in relation to the pharmacodynamic threshold of > 0.05, > 0.10 and > 0.15 IU/mL, respectively.
- Clinicians should consider alternative dosing regimens for rFXIII administration to minimise the risk of bleeding.



Editorial: Therapeutic Drug Monitoring (TDM): A Useful Tool for Pediatric Pharmacology Applied to Routine Clinical Practice Simeoli R et al. Front Pharmacol 2022;13:931843

- Pharmacometrics is useful
- TDM is optimal
  - Consider maturation, ontogeny, DDI
  - Application: antimicrobial, immunosuppressant, HSCT patients
  - Microsampling methods are increasing (VAMS, DBS etc.)

