

Göttingen minipigs model to study drug milk excretion and breastfed infant drug exposure

Domenico Ventrella, DVM, PhD
ALMA MATER STUDIORUM – UNIVERSITY OF BOLOGNA

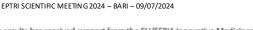
EPTRI SCIENTIFIC MEETING 2024 - BARI - 09/07/2024

The ConcePTION project and WP3

Main objective. Determination of drug transfer and infant drug exposure during lactation: generation of quantitative and translatable data

Objective:

Relying on existing expertise with animal lactation models, to develop a relevant animal lactation model (along with an in vitro model) in a species sufficiently related to human lactation physiology to validate extrapolation of the human in vitro and animal in vivo data to human in vivo predictions.



In vivo animal model for milk secretion of medicines

- No well-developed non-clinical model accepted by health authorities that can be used to predict medicine secretion into human milk
- The current PPND does not determine drug concentration in milk as a routine endpoint and does not evaluate milk quality or quantity leaving a gap in the testing paradigm

Göttingen Minipigs

- Well characterized model currently used by pharmaceutical companies for general and reproductive toxicology
- Similar anatomy of the mammary gland and lactation physiology when compared to humans
- Refined procedures for repeated blood samplings as well as training protocols available
- "Lower" ethical values in comparison to dogs and NHPs (other candidate species)

EUROPEAN PAEDIATRIC TRANSLATIONAL RESEARCH INFRASTRUCTURE

Study design template

MEDICINE ADMINISTRATION

Chosen medicines and timeponts

AMOXICILLIN

Dose: 7 mg/kg

Admin route: IM

Timepoints:

SOW DAYS:

· Before medicine admin.

• 2h post-admin.

• 4h post-admin.

• 8h post-admin.

SOW + PIGLETS DAYS:

· Before medicine admin.

• 2h after admin.

METFORMIN

Dosage: 500 mg/kg

850 mg/kg

Admin route: OS

LEVOCETIRIZINE

Dosage: 15 mg/kg

40 mg/kg

Admin route: OS

VENLAFAXINE

Dosage: 75 mg/kg

350 mg/kg

Admin route: OS

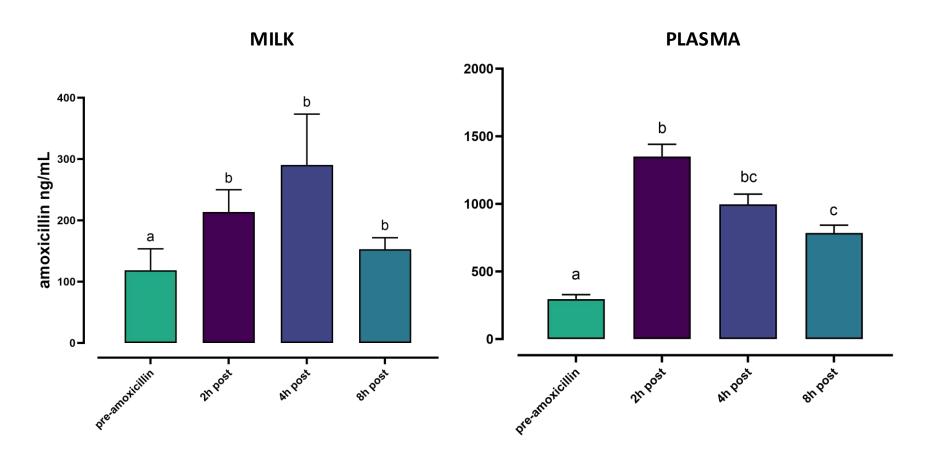
SOW DAYS:

- · Before medicine admin.
- 1h post-admin.
- 3h post-admin.
- 6h post-admin.

EPTRI SCIENTIFIC MEETIN G 2024 - BARI - 09/07/2024

SOW + PIGLETS DAYS:

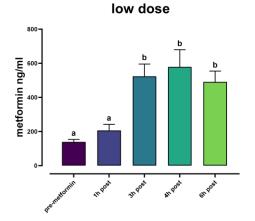
- Before medicine admin.
- 4h after admin.

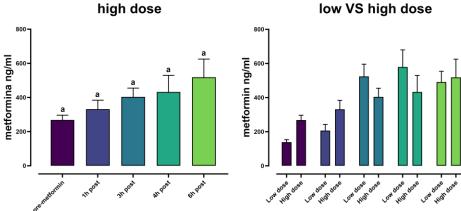


AMOXICILLIN (7 mg/kg IM, SID)

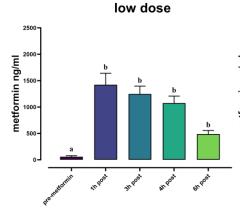
Amoxicillin was >LLOQ only in 6.6% of piglets plamsa samples

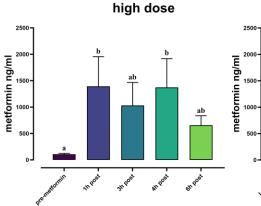
LLOQ: 10 ng/ml ULOQ: 10000 ng/ml

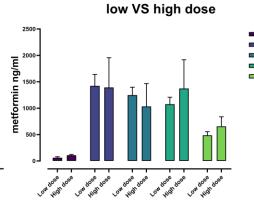



METFORMIN - Sows

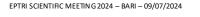
SOW MILK

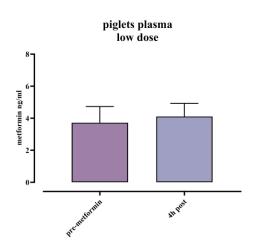


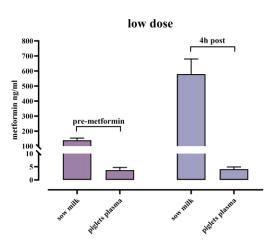


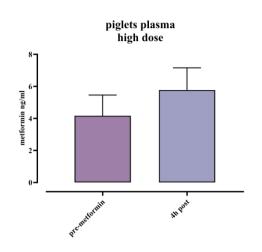

Low Dose: 500 mg/day High Dose: 850 mg/day

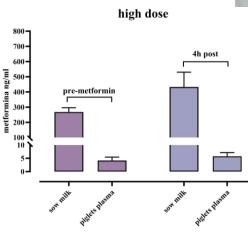
SOW PLASMA


LLOQ: 2 ng/ml ULOQ: 1600 ng/ml

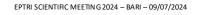


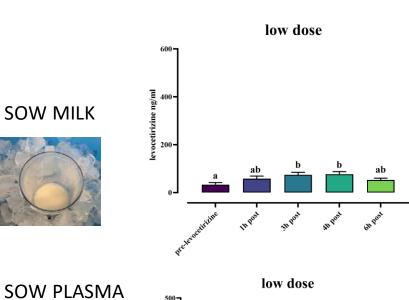


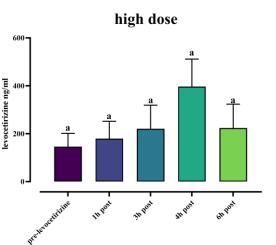


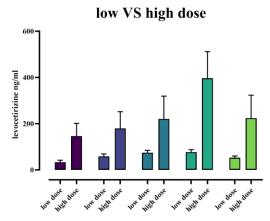

METFORMIN - Piglets

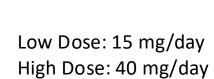
Low Dose: 500 mg/day High Dose: 850 mg/day

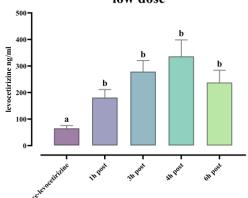

LLOQ: 2 ng/ml ULOQ: 1600 ng/ml







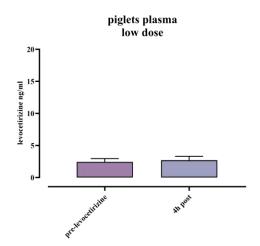

LEVOCETIRIZINE - Sows

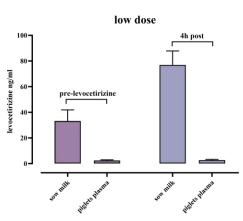


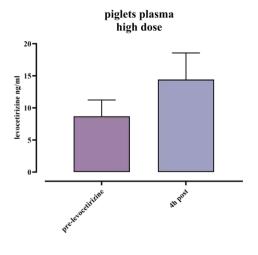
pre-levocetirizine 1h post 3h post 4h post

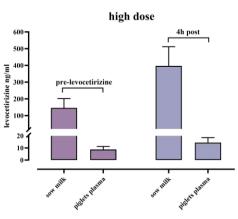
6h post

LLOQ: 1 ng/ml ULOQ: 1000 ng/ml








LEVOCETIRIZINE - Piglets

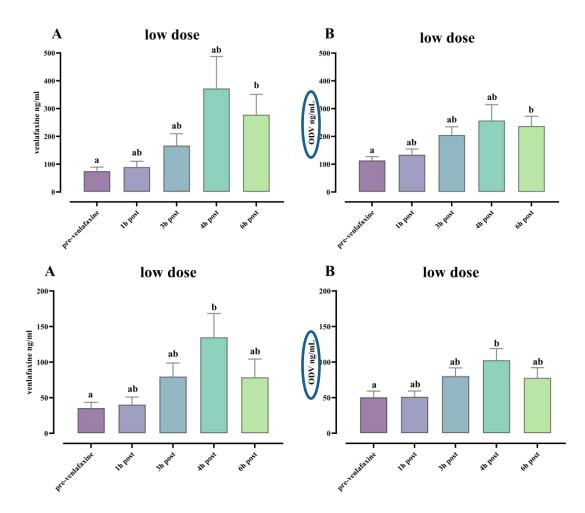
Low Dose: 15 mg/day High Dose: 40 mg/day

LLOQ: 1 ng/ml ULOQ: 1000 ng/ml

EPTRI SCIENTIFIC MEETIN G 2024 - BARI - 09/07/2024

VENLAFAXINE - Sows

SOW MILK

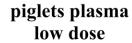


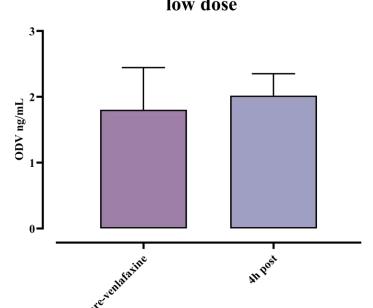
SOW PLASMA

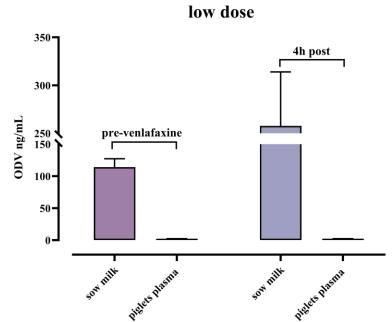
EUROPEAN PAEDIATRIC TRANSLATIONAL RESEARCH INFRASTRUCTURE

Low Dose: 75 mg/day High Dose: 375 mg/day

LLOQ: 0.5 ng/ml ULOQ: 500 ng/ml

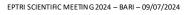






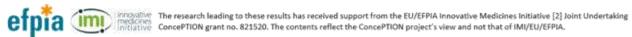
VENLAFAXINE - Piglets

Low Dose: 75 mg/day High Dose: 375 mg/day

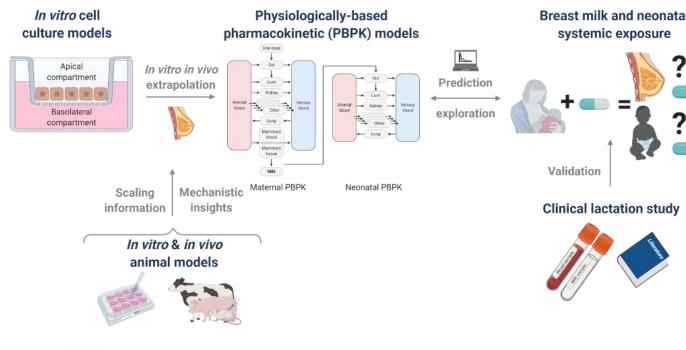

LLOQ: 0.5 ng/ml ULOQ: 500 ng/ml

MILK/PLASMA RATIOS

Medicine	Dose mg/kg	Admin route	0h	2h post	4h post	8h post	MEDIAN	HUMAN
Amoxicillin	7	IM	0.38 ±0.05	0.20 ±0.04	0.35 ±0.12	0.22 ±0.04	0.16	0.04-0.06


Medicine	Dose mg/day	Admin route	0h	1h post	3h post	4h post	6h post	MEDIAN	HUMAN	
Metformin	500	OS	3.52 ±0.38	0.17 ±0.03	0.43 ±0.05	0.58 ±0.10	1.16 ±0.14	0.69	0 12 1 00	
Metformin	800	OS	2.59 ±0.24	0.64 ±0.29	0.73 ±0.20	0.38 ±0.06	1.13 ±0.30	0.72	0.13-1.00	
Levocetirizine	15	OS	0.31 ±0.04	0.30 ±0.02	0.28 ±0.02	0.21 ±0.02	0.23 ±0.02	0.26	0.20	
Levocetirizine	40	OS	0.66 ±0.25	0.32*	0.24*	NA	0.30*	0.36	0.20	
Venlafaxine	75	OS	2.96 ±0.40	2.83 ±0.33	2.83 ±0.31	2.92 ±0.69	3.99 ±0.77	2.55	2.23	
ODV			2.54 ±0.21	2.64 ±0.24	2.79 ±0.31	2.54 ±0.48	3.45 ±0.41	2.50	NA	
Venlafaxine	375	OS	2.58 ±0.37	2.47 ±0.22	2.06 ±0.10	2.49 ±0.25	2.12 ±0.15	2.21	2.23	
ODV			2.85 ±0.42	2.30 ±0.14	2.12 ±0.23	2.85 ±0.51	2.19 ±0.18	2.21	NA	

M/P ratio are expressed as mean ±SEM; *= only 1 observation available



Not only in vivo....

Breast milk and neonatal

Development of a Pig Mammary Epithelial Cell Culture Model as a Non-Clinical Tool for Studying Epithelial Barrier—A Contribution from the IMI-ConcePTION Project

Chiara Bernardini 100, Debora La Mantia 100, Roberta Salaroli 100, Augusta Zannoni 1,2,*00, Nina Nauwelaerts 300, Neel Deferm 3, Domenico Ventrella 10, Maria Laura Bacci 10, Giuseppe Sarli 10, Michele Bouisset-Leonard 4, Pieter Annaert 300 and Monica Forni 1,200

Contents lists available at ScienceDirect

Biomedicine & Pharmacotherapy

journal homepage: www.elsevier.com/locate/biopha

Review

A comprehensive review on non-clinical methods to study transfer of medication into breast milk – A contribution from the ConcePTION project

Nina Nauwelaerts a, Neel Deferm A, Anne Smits b,c, Chiara Bernardini d, Bart Lammens e, Peggy Gandia f, Alice Panchaud g, h, Hedvig Nordeng f, Maria Laura Bacci d, Monica Forni d, Domenico Ventrella^d, Kristel Van Calsteren^l, Anthony DeLise^k, Isabelle Huys^l, Michele Bouisset-Leonard m, Karel Allegaert c, l, n, Pieter Annaert a, *

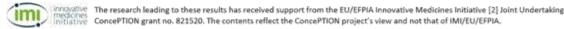
Research in Veterinary Science 172 (2024) 105244

Contents lists available at ScienceDirect

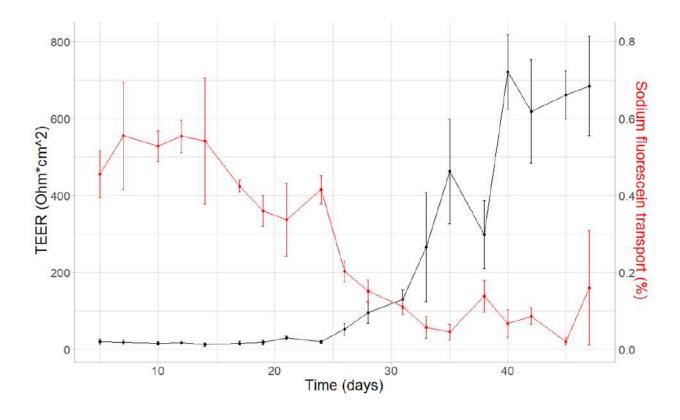
Research in Veterinary Science

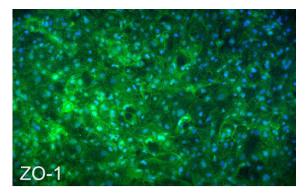
journal homepage: www.elsevier.com/locate/rvsc

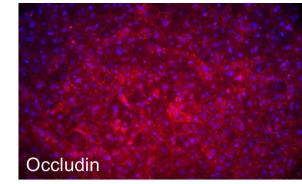
Isolation and characterization of mammary epithelial cells derived from Göttingen Minipigs: A comparative study versus hybrid pig cells from the **IMI-ConcePTION Project**


Chiara Bernardini a, b, Salvatore Nesci , Debora La Mantia , Roberta Salaroli , Nina Nauwelaerts^c, Domenico Ventrella ^{a,b}, Alberto Elmi ^a, Fabiana Trombetti ^a, Augusta Zannoni a,b, Monica Forni b,c

animals







In vitro: hMECs

- Culture protocol was established using primary human Mammary Epithelial Cells
- Epithelial cell phenotype was confirmed
- hMECs form a tight barrier around 35 days of culture on inserts
- Drug transporter proteins (uptake/efflux) have been characterized
- Paper in preparation: human mammary epithelial cells (hMECs) culture model for the blood milk barrier. A Contribution from the ConcePTION Project

Conclusions

- The study design led to high definition results in terms of M/P ratio
- Animals well tolerated all procedures and were cooperative
- The model can be refined by better rationalizing piglets samplings
- A wider variety of medicines needs to be tested to assess applicability of the trial
- Can this be a feasible and sustainable trial in the pharma setting?

