

Pier Luigi Martelli – University of Bologna – ELIXIR-IT

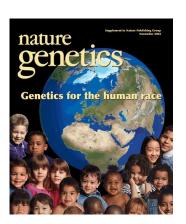
Biotechnology to bring innovation in the paediatric drug development

October 2, 2020

The event is part of the European Biotech Week 2020

The "omic" revolution

The analysis of the components of a living organism in its entirety



15/02/2001

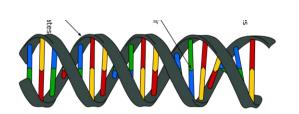
EUROPEAN PAEDIATRIC TRANSLATIONAL RESEARCH INFRASTRUCTURE

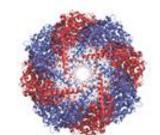
16/02/2001 Human Proteome 05/2014

Human Variations 11/2004

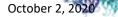
ENCODE 09/2012

RoadMap Epigenomics 02/2015


Genotype & Phenotype

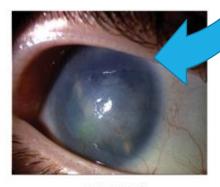


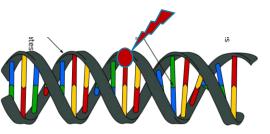
~ 20,000 protein coding genes

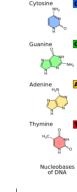

~ 230,000 RNA transcripts

~ 40,000 proteins

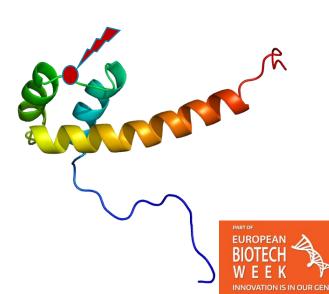
Genes & Diseases



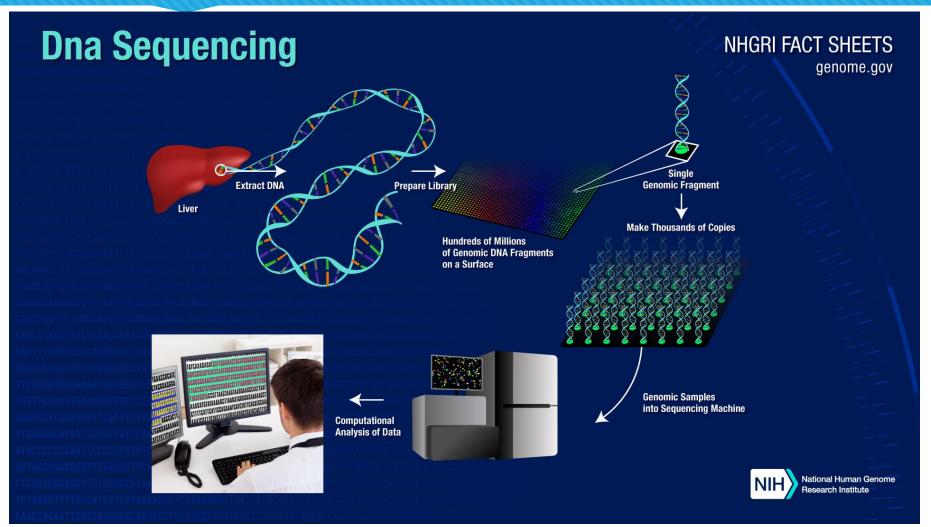

Aniridia



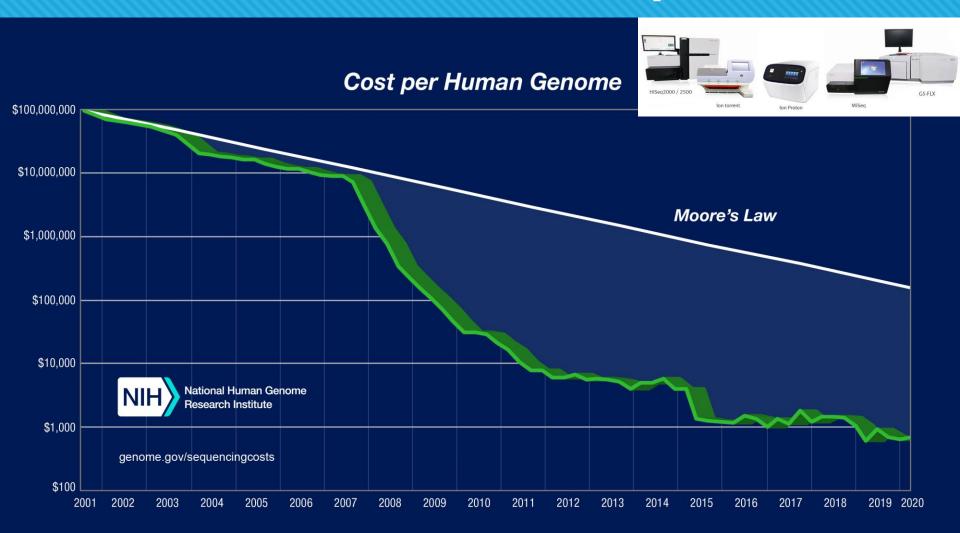
mut



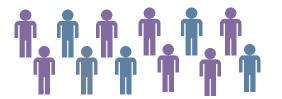
PAX6+/-

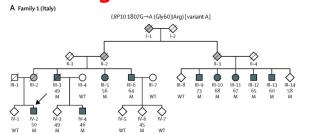


A single variation can lead to disease insurgence


Deep sequencing

Genomic Techniques

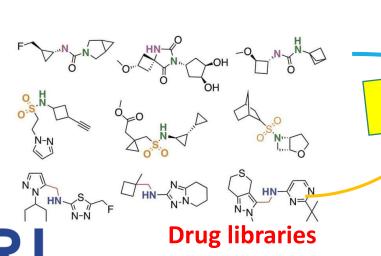




Drug target discovery

Case/control studies

Pedigree studies



EUROPEAN PAEDIATRIC TRANSLATIONAL RESEARCH INFRASTRUCTURE

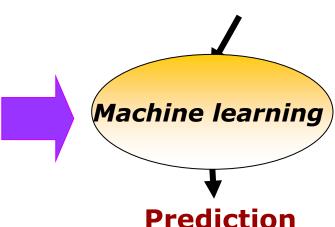
Around 4 millions sites differ between 2 individuals

Significant variations must be prioritised

Mutated genes/proteins

Computational prioritization

 To date, some 30.000 variations in 13.000 human proteins are associated to disease


Training

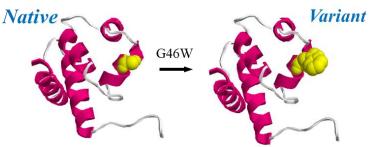
Data Base Subset

Machine learning General rules

- Each complete sequence reports millions of variations.
- Case-control or pedigree analyses report tens to hundreds variations Testing

New variations

Known associations


EUROPEAN PAEDIATRIC TRANSLATIONAL RESEARCH INFRASTRUCTURE

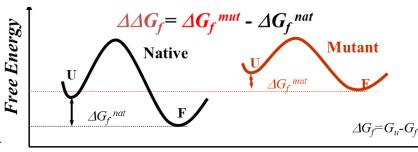
Computational methods can leverage available information and generalize to new uncharacterized variations

Predicting the effect of variations

www.biocomp.unibo.it/predictors

INPS-MD

Effects on protein stability

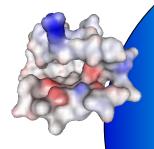

SNPs&GO Relation to disease

RBF Kernel

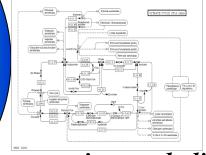
O(i) where i = disease or neutral

Method	Q2	P[D]	Q[D]	P[N]	Q[N]	С	PM (%)
PolyPhen ^a	0.71	0.76	0.75	0.63	0.64	0.39	58
SIFTb	0.76	0.75	0.76	0.77	0.75	0.52	93
PANTHER ^c	0.74	0.77	0.73	0.71	0.76	0.48	76
Eremorph ^d	0.74	0.83	0.64	0.68	0.85	0.50	82
HybridMeth ^e	0.74	0.74	0.70	0.74	0.77	0.47	100
SNPs&GO	0.82	0.83	0.78	0.80	0.85	0.63	100

Method	Blind test Corr / SE	P53 blind set Corr / SE	
INPS	0.68 / 1.26	0.69 / 1.45	
EASE-MM	0.69 / 1.34	0.56 / 1.13	sequence
INPS3D	0.72 / 1.15	0.76 / 1.35	
MAESTRO°	$0.70 / 1.13^{\circ}$	0.44 / 1.75	structure
mCSM^	0.73 / 1.08^	0.68 / 1.40	


Genotype to Phenotype relation is complex

Genes in DNA...


...code for proteins...

...with
different effects
depending on
variability

...proteins correspond to functions...

....in metabolic pathways

Proteins interact

Sequencing enables more Omics

Cell/Tissue specific genome →

Somatic variations (e.g. in cancer)

Cell/Tissue/Process specific transcriptome (RNA-seq)

→ When and where genes are expressed

Protein-DNA/RNA interactome (Chip-seq)

Mechanisms of gene expression regulation

DNA epigenome (Chip-seq, Methyl-seq, HI-seq,...)

Structure and state of chromatin (important for gene regulation)

Microbiome

Genome/transcriptome of host organisms important in health and disease

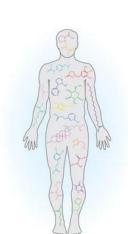
 \rightarrow

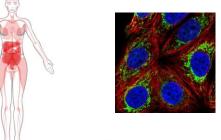
More omic levels can be investigated

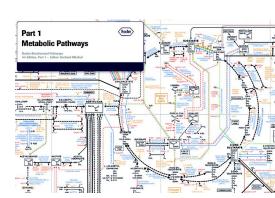
Cell/Tissue/Process specific proteome

When and where proteins are expressed

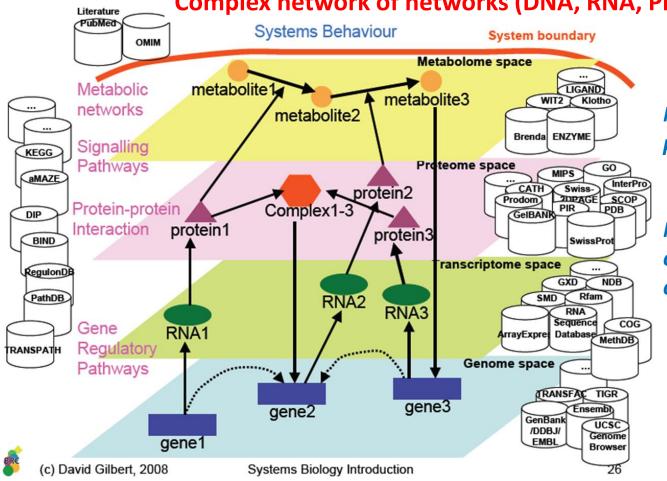
Mass-spec, immunofluorescence, ...


Protein-protein interaction networks


Yeast 2-Hybrid, affinity purification + Mass-spec, ...


Concentration of small molecules

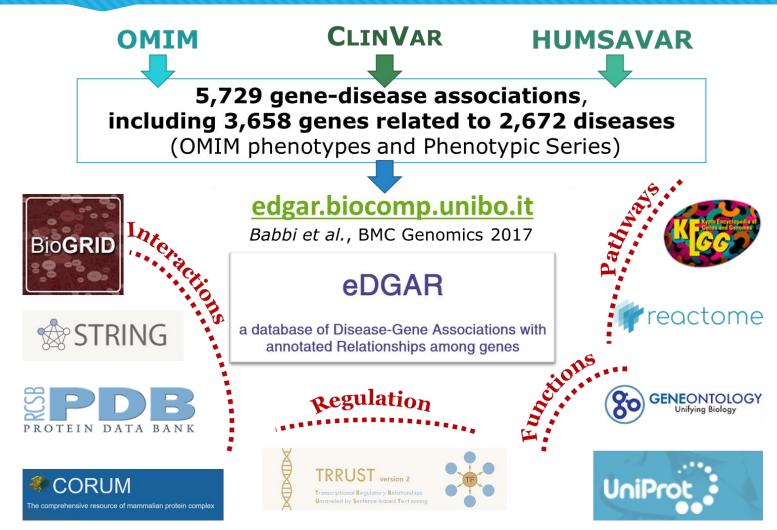
NMR, Mass-spec, HT chromatography...



Drug targets must be searched in the context of biological complexity

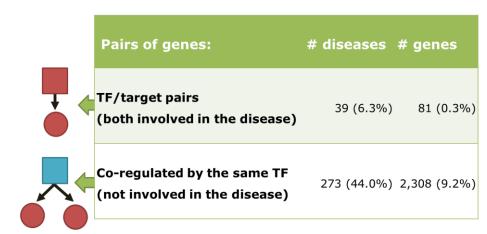
Complex network of networks (DNA, RNA, Proteins, Metabolites)

New targets can be predicted


New (unexpected) effects of a drug can be explained or predicted

Integrative computational methods are needed

Integrating the information available in different databases

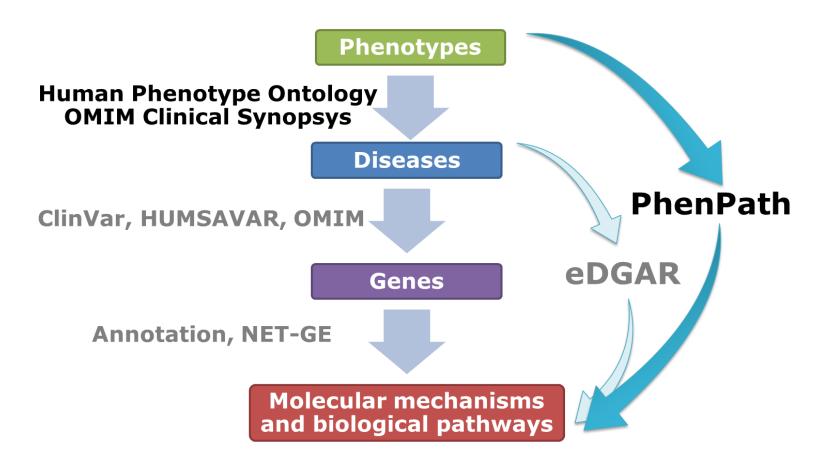


eDGAR shows disease genes in their context

<u>Interactions</u> among genes involved in polygenic diseases

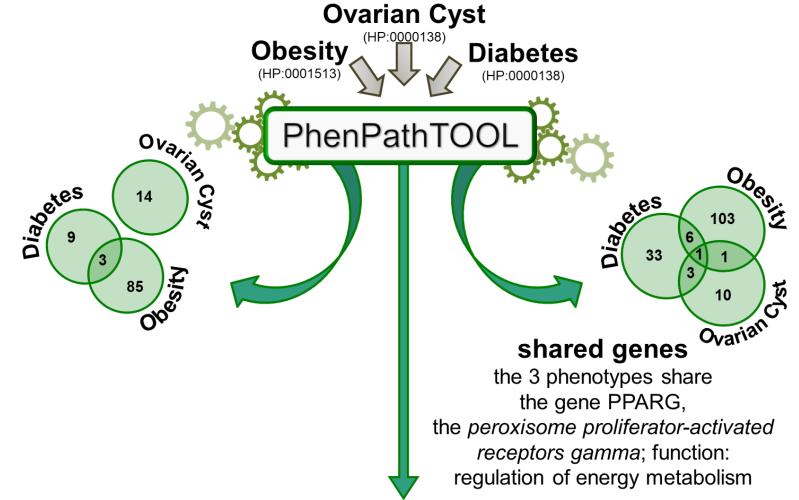
Regulatory relations among genes involved in polygenic diseases

pli Appl p21	Pairs of genes:	# diseases # genes
p00 Arp2	Co-resolved in PDB	96 (15.5%) 257 (0.8%)
ple Pp40	In the same CORUM complex	86 (13.8%) 469 (1.9%)
	Directly linked in STRING	291 (46.9%) 1,535 (6.1%)
	Directly linked in BIOGRID	250 (40.3%) 4,355 (17.4%)
	Indirectly linked in STRING	115 (18.5%) 944 (3.8%)
	Indirectly linked in BIOGRID	160 (25.8%) 5,228 (20.8%)


Functional relations among genes involved in polygenic diseases

		Pairs of genes:	# diseases	# genes	
	PEN	Sharing Molecular Function GO	586 (94.4%)	19,075 (76.0%)	
	-	Sharing Cellular Component GO	604 (97.3%)	23,645 (94.2%)	
		Sharing Biological Process GO	597 (96.1%)	22,948 (91.4%)	
		Sharing KEGG pathway	349 (56.2%)	3129 (12.5%)	
Olyvolynie	Sharing REACTOME pathway	474 (76.3%)	9806 (39.1%)	mis-2	
	5 D-Treatmen (JPT 13422) 13422 1	2.Delaydas (11123) Delaydas (11123) Enter Delaydas (11123) 2.7113 (27112 (27) 2.Delaydas (11123)	11.45 271170 Pyronis	olysis	

From phenotypes to pathways and genes



http://phenpath.biocomp.unibo.it/phenpath/

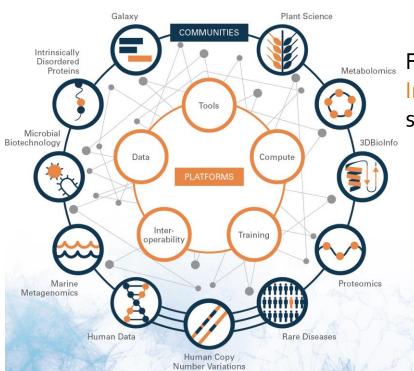
Target proteins/pathways can be identified starting from phenotypes

shared pathways

Conclusions

Deep sequencing, Mass spectrometry, Y2H and other techniques provide tools to dissect the complexity of biological systems

Drug targets and drug (side) effects must be discovered in the context of this complexity

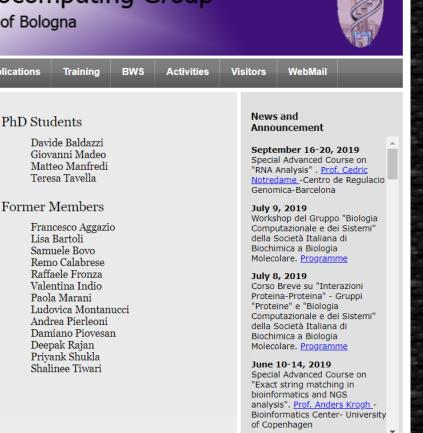

Data needs to be collected, standardized, integrated and analysed

ELIXIR: a Research Infrastructure to face the Big Data challenge in Biology in Biology

ELIXIR is an **intergovernmental organisation** (Landmark European Research Infrastructure) that brings together "bioinformatic resources" for life sciences from across Europe. These resources include databases, software tools, training materials, best practices, cloud storage and supercomputers.

Five technical **platforms** for Compute, Data, Tools, Interoperability and Training complemented by several **user communities**

1 hub 23 national nodes including over 160 Research Organizations.



www.biocomp.unibo.it

Giacomo Tartari (CNR-IBIOM)

