

Exposure to polycyclic aromatic hydrocarbons, hair nicotine, normalized vegetation index and lung function in a cohort of outpatient children with asthma

Giovanna Cilluffo¹, Vito Romaniello², Alessandro Piscini², Malvina Silvestri², Salvatore Stramondo², Nicola Murgia³, Angela Giuliani³, Simona Pichini⁴, Rossana Mancini⁴, Stefania La Grutta¹

> ¹ Istituto per l'Innovazione e la Ricerca Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR) ² Istituto Nazionale di Geofisica e Vulcanologia, Roma ³ Dipartimento di Medicina Occupazionale, Malattie Respiratorie e Tossicologia, Università degli Studi di Perugia ⁴ Centro Nazionale Dipendenze e Doping – Istituto Superiore di Sanità, Roma

Background

Exposure to secondhand smoke and polycyclic aromatic hydrocarbons (PAHs) have been implicated as risk factors for asthma [1-2]. Some crosssectional studies have shown an association between lung function and PAH [3-4]. Other studies have reported positive effects of green exposure on respiratory function [5]. No study has evaluated the effect of combined exposure to multiple factors on the performance of respiratory function in pediatric patients with persistent asthma.

(clinicalTrial.gov NCT02433275)

Aim

To evaluate in a cohort of children with mild/moderate persistent asthma:

- the distribution of PAH, hair nicotine and NDVI by level of asthma control
- the effect of PAH, hair nicotine and NDVI on spirometric parameters

Methods

50 male and female asthmatic children, 6-11 years old, were followed for 3 months at mean time intervals of one month. The metabolites of PAHs (1-Hydroxynaphthalene, 2-Hydroxynaphthalene, 2-Hydroxyfluorene, 1,9- Hydroxyphenanthrene, 2-Hydroxyphenanthrene, 3-Hydroxyphenanthrene, 4-Hydroxyphenanthrene, 1-Hydroxypyrene) were monthly measured according to guidelines [6]. The level of control (C: controlled, NC: not controlled / partially controlled) was assigned in accordance with the GINA guidelines (http://ginasthma.org). The normalized vegetation index (NDVI) was calculated by satellite acquisition on a 100m buffer for each dwelling. The effects of the considered environmental factors on the longitudinal trend of the spirometric parameters were estimated through a mixed-effect regression model. The model was adjusted for gender, age, height and level of control. Statistical analyses were carried out with the statistical software R (3.5.2); a p-value < 0.05 was considered statistically significant.

2-Hydroxyfluorene	123.58 ± 106.51	142.60 ± 84.68	130.05 ± 99.16	0.204
2-Hydroxyphenanthrene	75.75 ± 83.75	80.91 ± 47.40	77.50 ± 72.94	0.143
3-Hydroxyphenanthrene	72.91 ± 89.40	98.07 ± 56.60	81.47 ± 80.06	0.013
1,9-Hydroxyphenanthrene	110.03 ± 103.63	144.67 ± 61.39	121.81 ± 92.30	0.014
4-Hydroxyphenanthrene	11.46 ± 15.69	22.22 ± 32.02	15.12 ± 22.85	0.200
1-Hydroxypyrene	97.38 ± 97.22	130.09 ± 79.70	108.50 ± 92.15	0.055
Hair Nicotine	128.22 ± 211.76	251.54 ± 424.91	170.15 ± 302.86	0.395
NDVI	0.18 ± 0.09	0.23 ± 0.14	0.20 ± 0.11	0.386
Spirometry				
FEV1 z-score	0.89 ± 1.65	1.60 ± 2.44	1.14 ± 1.97	0.164
FVC Z-score	1.19 ± 1.61	1.73 ± 2.07	1.38 ± 1.79	0.394
FEF 25-75 score	-0.29 ± 1.18	0.04 ± 1.63	-0.17 ± 1.35	0.231
FEV1/FVC z-score	-0.29 ± 1.03	-0.17 ± 1.04	-0.25 ± 1.02	0.483

Table 2 Genaralized mixed models on spirometric parameters

	FEV1	FVC	FEF 25-75	FEV1/FVC
IPA				
2-Hydroxynaphthalene	-0.021	-0.044	0.079	0.107
1-Hydroxynaphthalene	-0.064	-0.056	-0.095	-0.069
2-Hydroxyfluorene	-0.485	-0.167	-0.481	-1.163*
2-Hydroxyphenanthrene	-0.112	-0.083	-0.112	-0.157
3-Hydroxyphenanthrene	-0.411	-0.553	-0.072	0.453
1,9-Hydroxyphenanthrene	-0.098	-0.062	-0.137	-0.353
4-Hydroxyphenanthrene	-0.179	-0.093	0.095	-0.084
1-Hydroxypyrene	1.285	0.963	0.763	1.33
Hair Nicotine	0.444	0.610	-0.096	-0.671*
NDVI	0.005	-0.020	0.053	-0.302

giovanna.cilluffo@irib.cnr.it

Conclusions

The results of the study showed that exposure to smoke and PAHs can determine harmful effects on the values of respiratory function parameters.

[1] Beydon N, et al.[Quality of life, asthma control, urinary cotinine and therapeutic education among asthmatic children]. Sante Publique. 2012 Mar-Apr;24(2):105-[4] Padula AM, et al. Ambient polycyclic aromatic hydrocarbons and pulmonary function in children. J Expo Sci Environ Epidemiol. 2015 May;25(3):295-302.

Figure 3 Correlations among PAH and spirometric parameters in C and NC

			C						NC		
2-Hydroxynaphthalene	-0.071 (0.7)	-0.11 (0.5)	0.089 (0.6)	0.15 (0.4)	1	2-Hydroxynaphthalene	-0.27 (0.3)	-0.34 (0.2)	-0.096 (0.7)	0.16 (0.5)	1
1-Hydroxynaphthalene	-0.21 (0.2)	-0.22 (0.2)	-0.17 (0.3)	0.044 (0.8)		1-Hydroxynaphthalene	-0.34 (0.2)	-0.21 (0.4)	-0.43 (0.09)	-0.4 (0.1)	
2-Hydroxyfluorene	-0.29 (0.1)	-0.25 (0.2)	-0.23 (0.2)	-0.094 (0.6)	- 0.5	2-Hydroxyfluorene	-0.17 (0.5)	-0.11 (0.7)	-0.21 (0.4)	-0.15 (0.6)	- 0.5
2-Hydroxyphenanthrene	-0.3 (0.09)	-0.28 (0.1)	-0.16 (0.4)	-0.022 (0.9)		2-Hydroxyphenanthrene	-0.56 (0.02)	-0.38 (0.1)	-0.64 (0.005)	-0.54 (0.03)	
3-Hydroxyphenanthrene	-0.4 (0.02)	-0.35 (0.04)	-0.35 (0.05)	-0.1 (0.6)		3-Hydroxyphenanthrene	-0.39 (0.1)	-0.41 (0.1)	-0.31 (0.2)	0.0081 (1)	
-Hydroxyphenanthrene	-0.31 (0.08)	-0.22 (0.2)	-0.33 (0.06)	-0.28 (0.1)	-0.5	1,9-Hydroxyphenanthrene	-0.22 (0.4)	-0.11 (0.7)	-0.34 (0.2)	-0.25 (0.3)	-0.5
1-Hydroxyphenanthrene	-0.21 (0.2)	-0.19 (0.3)	-0.075 (0.7)	0.016 (0.9)		4-Hydroxyphenanthrene	-0.28 (0.3)	-0.27 (0.3)	-0.11 (0.7)	-0.08 (0.8)	
1-Hydroxypyrene	-0.38 (0.03)	-0.33 (0.06)	-0.35 (0.05)	-0.12 (0.5)	-1	1-Hydroxypyrene	-0.52 (0.03)	-0.53 (0.03)	-0.42 (0.09)	-0.04 (0.9)	-1
	FEN	< ⁴ C	F2575	MINC			FEN	\$1°	£25.75	MINVC	
			44	E.					4	E.	

[5] Seo SC, et al. Clinical and immunological effects of a forest trip in children with asthma and atopic dermatitis. Iranian Journal of Allergy, Asthma and

[2] Jung KH, et al. Polycyclic aromatic hydrocarbon exposure, obesity and childhood asthma in an urban cohort. Environ Res. 2014; 128:35-41.

Immunology. 2015:28–36

[3] Han YY, Rosser F, Forno E, Celedón JC. Exposure to polycyclic aromatic hydrocarbons, vitamin D, and lung function in children with asthma. Pediatr Pulmonol. 2018 [6] Ramsauer B, et al. A liquid chromatography/tandem mass spectrometry (LC-MS/MS)method for the determination of phenolic polycyclic aromatic hydrocarbons (OH-PAH) in urine of non-smokers and smokers. Anal Bioanal Chem. 2011 Jan;399(2):877-89.

Oct;53(10):1362-1368.

19.