

EUROPEAN PAEDIATRIC TRANSLATIONAL RESEARCH INFRASTRUCTURE

Breath-Triggered Aerosol Release and Real-Time Determination of the Delivered Aerosol for (Pre)term Neonates

Felix C. Wiegandt¹, U. P. Froriep¹, T. Doll^{1,2}, A. Dietzel³, G. Pohlmann¹

¹Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany

²Hannover Medical School, Hannover, Germany

³Technische Universität Braunschweig – Institute of Microtechnology, Braunschweig, Germany

felix.wiegandt@item.fraunhofer.de

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 777554

Motivation

Conventional System (without a Breath-Triggered Technology): High Drug Loss

Motivation

Without a Breath-Trigger Technology

- Drug Loss: up to 80 %
- With a Breath-Trigger Technology
 - Drug Loss: ideally 0 %
- But: Challenging Breathing Pattern
 - Breathing Frequency: 60 breaths / minute
 - Low Tidal Volume: 4-6 ml/kg
 - Short Inspiration Time: 0.2-0.4 s

- No existing technology for breath-triggered drug release into the patient interface is currently available
- No standard test procedure to determine the aerosol output is accessible

Objectives

1) Develop a Modified Nasal Prong

- □ Integrated micronized valve
- Direct and fast aerosol release
- □ Aerosol release as targeted bolus
- □ Increase inhaled dose efficiency

2) Develop a Test Bench

- Measuring aerosol output / inhaled dose
- Applicable for preterm neonate breathing pattern
- Enabling real-time measurement

Objective 1: Nasal Prong

Schematic Nasal Prong

Virtual Meeting: April 2-3, 2020

Objective 2: Test Bench

EUROPEAN PAEDIATRIC TRANSLATIONAL RESEARCH INFRASTRUCTURE

Test Lung:

- Inhalation-exhalation ratio: 0.46:0.71
- Breaths per minute: 51
- Tidal volume: 12.3 ml
- Triggers the aerosol valve

Ventilation System:

- Babylog[®] 8000 plus
- CPAP-mode
- PEEP: 5 mbar
- Breathing gas flow: 6 l/min

Continuous Powder Aerosolizer

- Continuous aerosol flow: 0.84 l/min
- Recombinant surfactant protein-C

Results: Nasal Prong

Triggered Aerosol Release Technology

- Valve Integrated in Nasal Prong
- Direct Aerosol
 Release as Triggered
 Bolus
- Valve Response Time <20 ms</p>

Results: Test Bench

Aerosol Measurement

EUROPEAN PAEDIATRIC TRANSLATIONAL RESEARCH INFRASTRUCTURE

Conclusion

- 1) Develop a Modified Nasal Prong
 - ✓ Integrated Micronized Valve
 - \checkmark Direct and Fast Aerosol Release
 - ✓ Aerosol Release as Targeted Bolus
 - \checkmark Increase Inhaled Dose Efficiency
- 2) Develop a Test Bench
 - \checkmark Measuring Aerosol Output / Inhaled Dose
 - \checkmark Applicable for Preterm Neonate Breathing Pattern
 - ✓ Enabling Real-Time Measurement

Thank You

Many thanks to all my work colleagues, *Especially to Dr. Gerhard Pohlmann*

This work was supported through funding by

- BMBF (Assoc No GS2SH016)
- EU Horizon 2020 program (GA No 814654)

EUROPEAN PAEDIATRIC TRANSLATIONAL RESEARCH INFRASTRUCTURE

The views and opinions expressed in the aforementioned PowerPoint slides are those of the individual presenter and should not be attributed to **EPTRI or the EC**

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 777554