

EUROPEAN PAEDIATRIC TRANSLATIONAL RESEARCH INFRASTRUCTURE

Autism Spectrum Disorder: Linked-Read Sequencing Reveals New and Undetected Variants

Alessandra Mezzelani, PhD National Research Council, Italy Institute for Biomedical Technologies, Segrate (MI)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 777554

Autism Spectrum Disorder (ASD): epidemiology and etiology

Epidemiology:

- It occurs within the first 3 years of life
- The prevalence is of 1:68 with male:female ratio=5:1

Etiology not completely understood

- Genetics play a key role
- Causative or predisposing genetics variants in 30% of patients
- Thousands of genes are involved
- Gene-environment interaction has been proposed

Objective and study design

- Hypothesis: variations in non coding and/or unaccessible regions could be involved in ASD
- Study design: linked-read WG-NGS of patients with ASD is used to access and discover phasing disease associated regions
- Expectations: new variants can:
 - be integrated in interactome studies
 - represent new biomarkers useful:

- to design diagnostic protocols and kits
- in patient stratification and personalized medicine

Methods

• Ten patients with ASD were involved: 7 males and 3 females, including 2 couples of male siblings and 1 couple of male-female siblings

- HMW DNA was submitted to 10Xgenomics microfluidics partitioning and barcoding technology and then to Illumina library preparation and WG-NGS
- 10X Long Ranger pipelines and Loupe Genome browser were used to find and phase variants across >10Mb haplotype blocks in comparison to reference genomes.
- Genes affected by variants were compared with those already associated with ASD

Results: quality of linked read analysis

Sample 1: input 1,25ng of HMW-DNA

Phasing	
SNPs Phased	99.1%
ongest Phase Block	6,149,247 bp
N50 Phase Block	884,059 bp
Phase Block View	

SUMMARY 1 ALERTS HAPLOTYPES STRUCTURAL VARIANTS LINKED-READS Search by gene name or locus

SNPs Phased	Input DNA @						
99.1%	Molecule Length µ 28,330 bp						
	DNA in Molecules >20kb 70.3%						
	DNA in Molecules >100kb 3.32%						
Longest Phase Block GEMs Detected 6,149,247 1,435,086	Corrected Estimated of DNA Loaded 0.814 ng						
GEM Performance	Total DNA m						
I50 Linked-Reads per Molecule (LPM) 20.0							
fean DNA per GEM 346,101 bp	م ع ه ه ې م ع و ش						
Phasing	Structural Variants						
NPs Phased 99.1%	Large Structural Variant Calls 18						
ongest Phase Block 6,149,247 bp	Short Deletion Calls 3764						
I50 Phase Block 884,059 bp							

Structural Variants	
Large Structural Variant Calls	18
Short Deletion Calls	3,764

Sequencing	0
Number of Reads	707,459,180
Median Insert Size	371 bp
Mean Depth	27.1 X
Zero Coverage	0.126%
Mapped Reads	88.6%
PCR Duplication	5.24%
Q30 bases, Read 1	76.0%
Q30 bases, Read 2	69.9%

Results

Type of variants					
3_prime_UTR_variant	splice_donor_variant				
5_prime_UTR_variant	start_lost				
coding_sequence_variant	stop_gained				
downstream_gene_variant	stop_lost				
rameshift_variant	stop_retained_variant				
nframe_deletion	synonymous_variant				
nframe_insertion	TF_binding_site_variant				
ntergenic_variant	transcript_ablation				
ntron_variant	upstream_gene_variant				
missense_variant	feature_truncation				
non_coding_transcript_exon_variant	non_coding_transcript_variant				
protein_altering_variant	splice_region_variant				
egulatory_region_variant	regulatory_region_ablation				
splice_acceptor_variant	TFBS_ablation				

* * * * * * * * *

Number of v	variants
Total genes	23'740

Total variants	13'297
Annotations within genes	759'163
Annotations out of genes	338'078
Existing variants	942'744
New variants	154'497

EUROPEAN PAEDIATRIC TRANSLATIONAL RESEARCH INFRASTRUCTURE

Results: variant consequences

Consequences (all)

Consequences (coding)

Results: genes containing SFARI annotated/not annotated SNPs distributed into SFARI categories

Genes containing SFARI annotated SNPs distributed into SFARI categories

Sfari modules	S	1	2	25	3	35	Tot	_		
#genes	65	132	195	10	388	29	819			
2S $2S$ $2S$ $2S$ $2S$ $2S$ $2S$ $2S$								S 3S		
	-		Sfari	S	1	2	25	3	35	Tot
			modules							
			#geni	31	79	120	7	240	17	494

SFARI database https://gene.sfari.org/

EUROPEAN PAEDIATRIC TRANSLATIONAL RESEARCH INFRASTRUCTURE

eptri

Conclusions

- Linked-read sequencing technology performed at CNR-ITB has allowed to decipherer the genomics heterogeneity in ADS
- Homozygous variants common to 3 couples of affected siblings was identified.
- Further studies will be performed to identify haploblocks carrying the risk alleles and to validate the new ASD variations
- The new biomarkers will be used:
 - to stratify ASD patients population
 - to identify pathways and gene networks involved in the disorder
 - design target-driven personalized treatment

Perspectives

- Further sophisticated bioinformatics analyses of the results can predict new ASD associated genes
- Possible development and application of dedicated AI, performed at CNR-ITB, can accelerate these analyses

 These linked-read WG-NGS based approaches can be applied to many other pediatric diseases with unknown genetic causes

Acknowledgements

Coauthors:

- Francesca Anna Cupaioli¹, Ettore Mosca¹, Noemi Di Nanni¹, Paride Pelucchi¹, Luciano Milanesi¹, Maria Elisabetta Raggi², Laura Villa²
- *1 National Research Council, Institute of Biomedical Technologies, Segrate, Italy*
- 2 Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy.

Projects:

EU project GEMMA (grant agreement No 825033) <u>www.gemma-</u> project.eu

EPTRI

EUROPEAN PAEDIATRIC TRANSLATIONAL RESEARCH INFRASTRUCTURE

The views and opinions expressed in the following PowerPoint slides are those of the individual presenter and should not be attributed to EPTRI or the

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 777554